Data Guided Approach to Generate Multi-dimensional Schema for Targeted Knowledge Discovery
نویسندگان
چکیده
Data mining and data warehousing are two key technologies which have made significant contributions to the field of knowledge discovery in a variety of domains. More recently, the integrated use of traditional data mining techniques such as clustering and pattern recognition with data warehousing technique of Online Analytical Processing (OLAP) have motivated diverse research areas for leveraging knowledge discovery from complex real-world datasets. Recently, a number of such integrated methodologies have been proposed to extract knowledge from datasets but most of these methodologies lack automated and generic methods for schema generation and knowledge extraction. Mostly data analysts need to rely on domain specific knowledge and have to cope with technological constraints in order to discover knowledge from high dimensional datasets. In this paper we present a generic methodology which incorporates semi-automated knowledge extraction methods to provide data-driven assistance towards knowledge discovery. In particular, we provide a method for constructing a binary tree of hierarchical clusters and annotate each node in the tree with significant numeric variables. Additionally, we propose automated methods to rank nominal variables and to generate candidate multidimensional schema with highly significant dimensions. We have performed three case studies on three real-world datasets taken from the UCI machine learning repository in order to validate the generality and applicability of our proposed methodology. .
منابع مشابه
A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملA User-Guided Approach for Large-Scale Multi-schema Integration
Schema matching plays an important role in various fields of enterprise system modeling and integration, such as in databases, business intelligence, knowledge management, interoperability, and others. The matching problem relates to finding the semantic correspondences between two or more schemas. The focus of the most of the research done in schema and ontology matching is pairwise matching, ...
متن کاملToward intelligent data warehouse mining: An ontology-integrated approach for multi-dimensional association mining
A data warehouse is an important decision support system with cleaned and integrated data for knowledge discovery and data mining systems. In reality, the data warehouse mining system has provided many applicable solutions in industries, yet there are still many problems causing users extra problems in discovering knowledge or even failing to obtain the real and useful knowledge they need. To i...
متن کاملData Mining: A Novel Outlook to Explore Knowledge in Health and Medical Sciences
Today medical and Healthcare industry generate loads of diverse data about patients, disease diagnosis, prognosis, management, hospitals’ resources, electronic patient health records, medical devices and etc. Using the most efficient processing and analyzing method for knowledge extraction is a key point to cost-saving in clinical decision making. Data mining, sometimes called data or knowledge...
متن کاملA data mining approach to employee turnover prediction (case study: Arak automotive parts manufacturing)
Training and adaption of employees are time and money consuming. Employees’ turnover can be predicted by their organizational and personal historical data in order to reduce probable loss of organizations. Prediction methods are highly related to human resource management to obtain patterns by historical data. This article implements knowledge discovery steps on real data of a manufacturing pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012